
NASA Cost Estimating Symposium

Flight Software Cost Growth:
Analysis and Recommendations

Dr. Jairus Hihn
Dr. Hamid Habib-agahi

March 2, 2000

Mission and System Architecture Section
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91109

JMH & HH, JPL , 3/2/00 2

AGENDA

• Methodology

• Sample Summary Information

• Cost Growth Sources

• Recommendations

• What’s Next

JMH & HH, JPL , 3/2/00 3

•

Flight Software Cost Risk Study: Methodology

1) Identified 8 missions and 11 participants

2) Unstructured Interview based on Protocol Analysis

3) Identified initial risk categories

4) Follow up Structured Interview to verify risk categories and to identify additional
information

5) Draft Flight Software Cost Risk Management Report on causes and recommendations

6) Workshop/Focus Group to brainstorm underlying causes of software cost growth and to
review recommendations

7) Multi-voting to identify top strategic policy recommendations

8) Updated Flight Software Cost Risk Management Report

9) Second Workshop/Focus Group to develop JPL Policy Recommendations and SW
Development Principles

JMH & HH, JPL , 3/2/00 4

Summary of Mission Characteristics

Mission Flight/
Ground

In-house
vs.

Contract

Current
Phase

Cost
Growth >

20%

Number of
Participants

Mission 1 Flight In-house Operations Yes 2
Mission 2 Flight In-house Completed Yes 2
Mission 3 Flight In-house Operations Yes 1
Mission 4 Flight Contract Operations Yes 1
Mission 5 Flight Contract Operations Yes 1
Mission 6 Flight Contract Implemen-

tation
Yes 2

Mission 7 Ground In-house Implemen-
tation

No 1

Mission 8 Ground In-house Implemen-
tation

Yes 1

JMH & HH, JPL , 3/2/00 5

Software Cost Growth Summary

SW Cost Growth
(Percent of SW Budget)

Mean Range
51% 25%-71%

JMH & HH, JPL , 3/2/00 6

Reported Risk Area Frequency with Summary Details

Risk Area % of Missions
Responses

Summary of Reported Issues

Experience
& Teaming

71% • Management and system engineers had extensive hardware experience but
insufficient software experience

• Weak teaming between hardware, software and systems teams
• SW engineers lacked system and mission experience

Planning
71% • Poor planning and estimation practices

• Planned inheritance never happened
• Insufficient reserves for SW

Requireme
nts &
Design

57% • Lack of good system architecture and system partitioning
• Lack of good software architecture
• Systems decisions made without accounting for impact on software
• SW requirements solidify late in the life cycle and are very volatile

Testing 71% • Testbeds; too few, too late, not validated, insufficient capability

Software
Inheritance

57% • Inherited code did not behave as advertised, was poorly documented, and
required more modification than expected.

(5 of 8 missions attempted to inherit software. Of these, 4 reported major
problems.)

Tools &
Methods

86% • Poor test result analysis tools
• Purchased COTS tool never used.

Staffing
71% • High turnover in software staff

• SW team was not included in early stages of planning
• Integration and SW teams were not available to support ATLO

JMH & HH, JPL , 3/2/00 7

Cost Risk Impact

RISK AREA Range Mean
Experience & Teaming 5-15% 10%
Planning 20-50% 35%
Requirements & Design 10-50% 25%
Staffing 5-25% 10%
Testing 10-30% 15%
Tools 5-20% 5%

JMH & HH, JPL , 3/2/00 8

Summary of Software Cost Growth Sources by Importance

Risk Area
Frequency of
Occurrence

(% of Projects)

Estimated
Contribution

To Cost Growth

Which risk areas do
you think are the

most important for
JPL to address?

Which risk areas do
you think are the

most important for
project managers to

consider?
Planning
(incl. Control) 71% 35% 28% 28%
Requirements
& Design (incl.
Architecture &
SW volatility)

57% 25% 15% 13%

Experience &
Teaming

71% 10% 20% 25%

Testing 71% 15% 14% 10%
Staffing 71% 10% 7% 10%
Software
Inheritance

57% Incl. In Planning 11% 3%

Tools/ Methods 86% 5% 5% 6%

JMH & HH, JPL , 3/2/00 9

Top Five Risk Areas: The Causes Flight Software Cost Growth
Cost Growth CausesRisk Area

Cost Growth Sources Process People/Teams Tools & Methods

Planning

• Poor planning and
estimation practices

• Insufficient reserves for
SW

• No generally accepted planning process for
software development.; planning is largely
dependent on the individual engineer (preparing
the plan)

• Uniqueness of software not captured in initial
stages (functional to deliverable)

• SW requirements and design are more volatile
& solidify later than hardware in the life cycle.

• Don't know how to freeze software
requirements the same way we know how to
freeze hardware requirements

• SW team not included in early stages of
planning

• SW not recognized in initial planning

• Poor and constantly changing assumptions
and cost estimation methods

• Lack of software planning tools
• Lack of SW cost metrics.

Requirements
& Design

• Lack of good architecture
and system partitioning

• Systems decisions made
without accounting for
impact on software

• Subsystem view of spacecraft -- not viewed as
important to have a top-level architecture early
in the project.

• Software design is traditionally done at the
subsystem level (based on hardware
perspective)

• Architectural issues are not sufficiently worked
out in Phase A/B

• Concurrent development can lead to interface
problems due to lack of communication
between teams especially when there is
schedule compression.

• No awareness or recognition even at the
mission & system level that software
needs to be addressed.

• Don't view architecture as a software
intensive process

Experience &
Teaming

• Insufficient software
experience among
managers and system
engineers

• Poor teaming between
HW/ SW and
systems/SW team

• Management and system engineers have
limited SW experience

• Engineers grew up in a hardware intensive
world.

• Managers and system engineers do not
view software engineers as broad enough.

• Lack of software-system engineers
• Software culture is underdeveloped at the

present

Testing

• Testbeds; too few, too
late, not validated,
insufficient capability

• Lack of early test
planning; lack of
functionality,

• Lack of sufficient funding.
• Testbeds not listed in WBS; not accountable.
• Lack of sufficient schedule or recognition of the

importance of testing.
• "Big Bang" style testing waits until end to test.
• Test documents not in place until late in life

cycle

• Lack of education & appreciation of value
for testbeds.

• Test team not in place until late in life
cycle

• Integration and SW teams not available to
support ATLO

• Dependence on hardware testbeds.
• Lack of tools and under utilization of existing

tools
• Lack of controlled tests and test data

Software
Inheritance

• Inherited code did not
behave as advertised, was
poorly documented, and
required more
modification than
expected

• Lack of software inheritance review process.
• Inheritance not distinguished between reusable

code and code that has not been designed for
that purpose. Inheritance (typically) only reuses
the design.

• No incentives for projects to develop fully
reusable code.

• Many projects fail to bring onboard the
original developers when they attempt to
inherit software

• Too many advantages of inheritances
assumed, esp. cost savings

• Cost models don't properly account for
COTS, sw inheritance and modification..

• Too often assumed that COTS costs are free

JMH & HH, JPL , 3/2/00 10

 Recommendations in Top Risk Areas Receiving 10 or More Votes
RecommendationsRisk

Area
Cost Growth

Sources Process People/Teams Tools/Methods

Planning,
Estimation
& Control

• Poor planning and
estimation practices

• Insufficient reserves
for SW

1. Need a focused end point with
clear success criteria

2. Need better tailored risk
management plan with appropriate
contingencies

3. Allocate larger percentage reserves
to software

Requirements
& Design

• Lack of good
architecture and
system partitioning

• Systems decisions
made without
accounting for
impact on software

4. Require that a clear understanding
of SW be included as part of NAR
approval

5. Need good architecture to define
demarcation between HW and SW

6. System Engineers need to
understand that the software
provides the system level
interfaces

7. Do not look at SW as separate
item but see as part of an
integrated system design

Experience
& Teaming

• Insufficient software
experience among
Managers and
system engineers.

• Poor teaming
between HW/ SW
and systems/SW
team

8. Project office needs to have some
SW expertise

9. SW team needs to understand
system1

10. Everyone should have some
mission level training to provide
end-to-end understanding of the
system 1

Testing

• Testbeds; too few,
too late, not
validated, lacked
capability

• Lack of early test
planning; lack of
functionality,

11. Testbeds and simulators need to
be made a major product
deliverable that is completed early
in lifecycle

12. Need to have a dedicated
integration team and a dedicated
test team whose job is it to break
the software

13. Require a test engineer be a
member of the early planning
team and reviews.

Software
Inheritance

• Inherited code did
not behave as
advertised, was
poorly documented,
and required more
modification than
expected

14. Need a software inheritance
review

15. For Inheritance people need to
come with the software

16. To increase the amount of
Inheritance between projects,
need to create infrastructure to
provide incentives to develop
reusable code and to maintain it.

JMH & HH, JPL , 3/2/00 11

 Flight Cost Growth Summary of Key Recommendations

Projects need to have:

• Key personnel with major software experience as part of planning, design and decision
making processes

• A system level design that is not primarily hardware oriented but must represent an
integrated Hardware-Software design

• Multiple testbeds and simulators available early in life cycle

JMH & HH, JPL , 3/2/00 12

Policy Recommendations

Recommended JPL Organizational Policy

1. Require all projects have a software system manager with budget authority and responsibility over flight and ground
SW and reports directly to the project manager. (The same as the spacecraft and instrument managers.) Among
others the software system managers responsibilities include:

Recommended JPL Product Policies

2. Require the development of a system architecture supported by a software architecture that clearly documents an
integrated hardware and software design prior to PDR.

3. Require the development of a management plan that addresses software including a risk management plan with
reserve and contingency allocations based on estimated risk prior to PDR.

4. Require the development of a test strategy and plan prior to PDR.

Recommended JPL Process Policies

5. Require a Software Inheritance Review similar to the Hardware Inheritance Review (when appropriate) prior to PDR
and CDR.

6. Require that software be reviewed at the NAR.

7. Require that the software architectural designs be reviewed at PDR and updated at CDR.

8. Require Risk Management Plan be reviewed at PDR and updated at CDR.

9. Require Test Plans and status be reviewed at PDR and updated at CDR.

JMH & HH, JPL , 3/2/00 13

Conclusion

Results included in JPL Handbook–
Software Development Principles for Flight Systems: General Principles

Developing a function based approach that combines parametric modeling with
quasi-bottom up estimation

 Distributed report to senior managers and key JPL personnel

Summary of Initial Recommendations by Risk Area

Risk Area Summary of Reported Recommendations
Experience &
Teaming

• Need project managers & system engineers who understand SW
• System engineers need to understand that SW provides the system level interfaces
• Project office needs to have some SW expertise
• Need to build a team that can work together and communicate
• PMs need to be able to identify staffing problems early

Planning • Need a focused end point with clear success criteria
• Need better tailored risk management with contingency plans
• Need a plan you can track and hang your hat on based on a complete lifecycle
• SW must have an early presence even in pre-Phase A and be part of an integrated
plan

• Allocate larger reserves to SW
• Require that a clear understanding of SW be included as part of NAR approval
• Need more detailed planning and tracking of SW similar to HW
• When putting together a plan get inputs from everyone and negotiate. Add

schedule slack but make sure all manager’s know they are accountable
• Need to change rules of thumb. E.g., SW development vs. test used to be 50/50

now appears to be 15/85
Requirements &
Design

• Must have a development process that deals with evolving reqs & assumes things
will break.

 Early and extensive prototyping
 Incremental deliveries & evolving documents
 Isolate interfaces

• Identify standardized SW functions and put in HW.
• Need good architecture to define demarcation between HW and SW.
• Do not look at SW as separate but see as an integrated design
• Get a baseline and CM in place so can carefully manage prioritized requirements

Testing • Need to have many and varied SW test environments
• Need to have a dedicated integration and a dedicated test team whose job it is to

break the SW
• Testbeds and simulators need to be made a major product deliverable that is

completed early in lifecycle
Software
Inheritance

• Need a software inheritance review
• For successful software inheritance, developers need to come with the software

Tools etc. • Make sure target and development systems are the same
• Use design tools with proven record
• Get methodology and process in place before purchasing tools
• Need good test analysis tools

Staffing • We need to go outside to get more expertise
• Software team needs to understand the system
• Plan to over staff SW engineers to deal with turnover
• Need a mechanism to hire more SW people without elaborate hiring procedures
• Everyone should have some mission level training to provide end-to-end

understanding of the system

JMH & HH, JPL , 3/2/00 15

